Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1650891

ABSTRACT

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Lung/pathology , SARS-CoV-2 , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Cohort Studies , Female , Gene Expression Regulation , Humans , Influenza, Human/genetics , Influenza, Human/pathology , Influenza, Human/virology , Lung/metabolism , Male , Middle Aged , Orthomyxoviridae , RNA-Seq/methods , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/pathology , Viral Load
2.
Nat Commun ; 12(1): 1660, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132065

ABSTRACT

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Subject(s)
COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Drug Interactions , Female , Gene Expression Profiling , Genome, Viral , HLA Antigens/genetics , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Male , Middle Aged , Molecular Diagnostic Techniques , New York City/epidemiology , Nucleic Acid Amplification Techniques , Pandemics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
3.
bioRxiv ; 2020 May 01.
Article in English | MEDLINE | ID: covidwho-823190

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL